A New Prescription: Genomic-Driven Oncology for the Forward-Thinking Pharmacist

Noor Naffakh, PharmD, MS, BCOP Clinical Assistant Professor, Clinical Pharmacist Co-Director of Oncology Precision Medicine UIHealth March 16th, 2024

Disclosures

I have no actual or relevant financial relationships to create a potential conflict of interest in relation to the content of this presentation

Acknowledgements

- Mary Walters, PharmD, BCOP
- Ryan Nguyen, DO

Abbreviations

ASCO – American Society of Clinical Oncology

CADs – cancer access data shelter

CNV – copy number variant

CPIC - Clinical Pharmacogenetics Implementation Consortium

FISH – Fluorescence in situ hybridization

GWAS - genome-wide association studies

IHC - Immunohistochemistry

MTB – Molecular Tumor Board

mBCa – Metastatic Breast Cancer

NGS - Next Generation Sequencing

POTB - Precision Oncology Tumor Board

PCR – polymerase chain reaction

PD – Pharmacodynamics

PK - Pharmacokinetics

PM – Precision Medicine

POTB - Precision Oncology Tumor Board

RWD - Real World Data

TNBC – Triple Negative Breast Cancer

VUS – variant of uncertain significance

WES - Whole Exome Sequencing

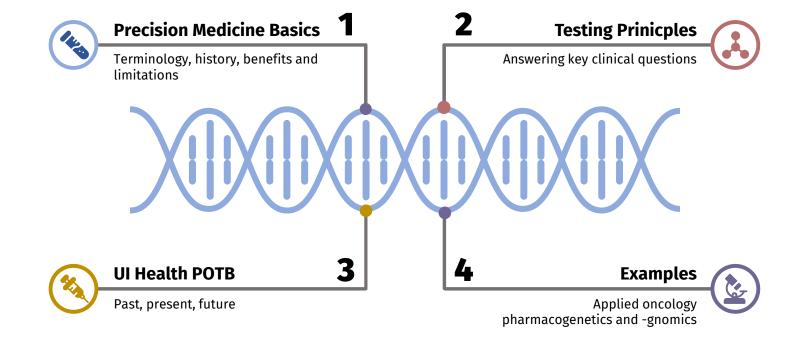
WGS – Whole Genome Sequencing

Objectives

Define the key terminologies associated with precision medicine in oncology

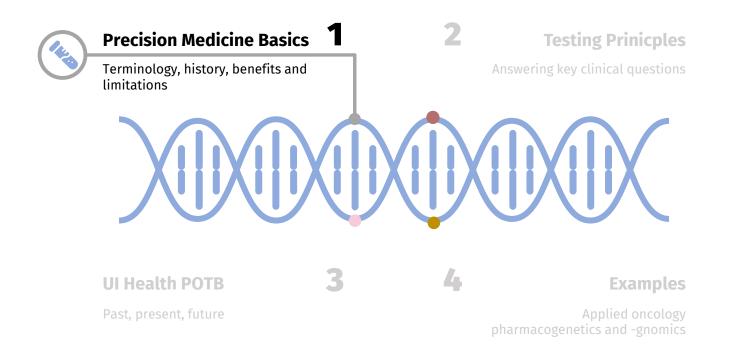
01 02

Describe the use of genomics in personalizing cancer treatment

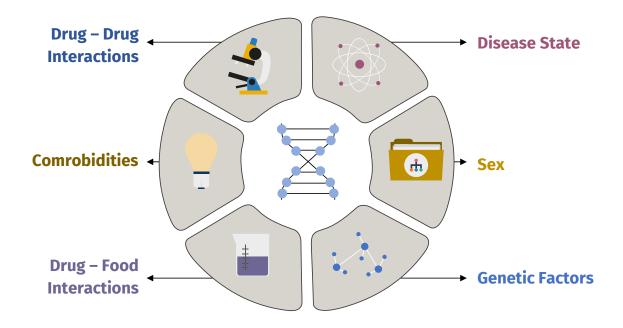

Explore the benefits and challenges of integrating precision medicine into the pharmacy oncology practice

04

Identify recent advancements in genomic-driven oncology.



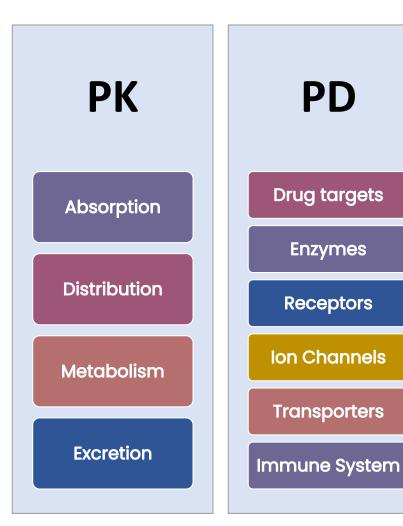
Outline


Outline

Precision Medicine

Tremendous interindividual variability in the response to pharmacologic agents

Application of patient-specific clinical and genetic/genomic profiles to decisions regarding prevention, diagnosis, and treatment of disease


General Terminology

- **Pharmacogenomics** = role of various components of the genome on pharmacokinetic and -dynamic activity of a drug
 - **Pharmacogenetics =** refers to the role of a specific DNA polymorphism or coding variant effects drug response

J Psychiatr Pract. 2013 Mar;19(2):142-9. Slide credit: Adapted from Walters, M, OPM CUW, 2022.

PD

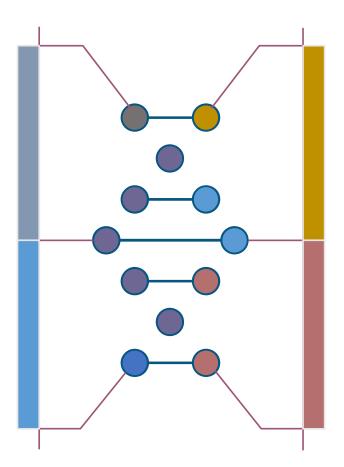
Drug targets

Enzymes

Receptors

Ion Channels

Transporters


General Terminology

Germline

- Hereditary mutations found in germ cells. Affects all cells within the body
- Passed down through generations
 - Influences risk for developing disease

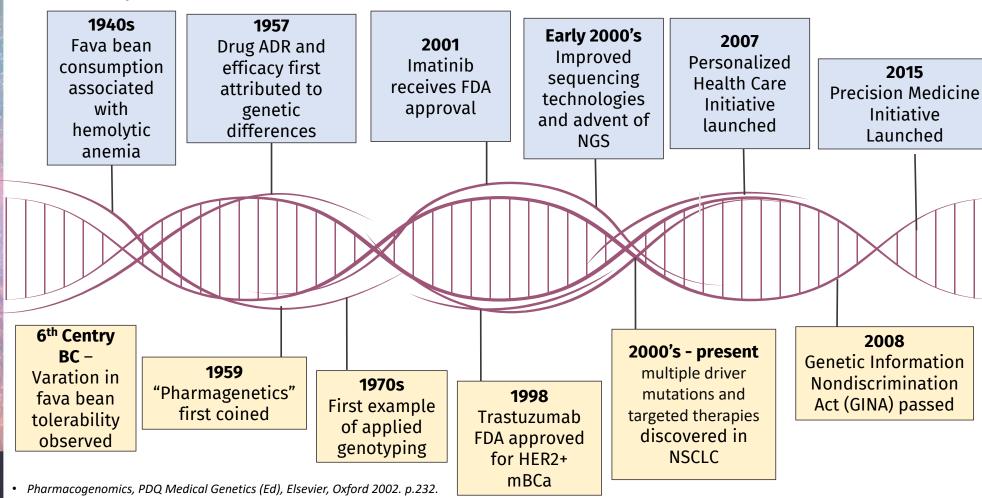
Genotyping

Determining the combination of alleles (variants) at a specific location in the genome



Somatic

- Occur in non-reproductive cells (i.e tumor)
- · Cannot be inherited, but accumulate
- May impart growth advantage (driver) or have no clinical effect (passenger)


Genetic variation

 Differences in genetic sequences among individuals in a population

History of Precision Medicine

 Precision Oncology: Who, How, What, When, and When Not?. Am Soc Clin Oncol Educ Book 37, 160-169(2017).

Potential Benefits

Non-Molecular Directed

Molecular Directed

 With each line of therapy duration of sequential chemotherapy generally <u>LESS</u> effective compared to prior therapy

> <u>Duration of PFS (Second line Chemo)</u> ≤ **0.8** Duration of PFS (First line Chemo)

 With each line of therapy duration of sequential therapy generally <u>MORE</u> effective compared to prior therapy

Duration of PFS (Molecular)

> 1.3

Duration of PFS (first line Chemo)

Radovich M. et al. (2016). Oncotarget, 7, 56491-56500.

Guideline Recommendations

Various oncology societies recommend the use NGS and molecular profiling to guide treatment decisions, identify actionable genetic alterations, and support personalized cancer care across different types of cancer

EDA Approved Targeted Therapies in Opcology

-DA-AP	proved	lar	geted	1 [nerapie	25	in C	ncoi	$\bigcup \xi$	37
ALK fusion	BRAF		BRCA1/BRCA 2		EGFR		EGFR	exon 20		ERBB2 (HER2)
AlectinibBrigatinibCeritinibCrizotinibLorlatinib	 Dabrafenib + trametinib Encorafenib + binimetnib Vemurafenib + cobimetinib 		NiraparibOlaparibRucaparibTalazoparib		AfatinibDacomitinibErlotinibGefitinibOsimertinib		• Amivanta	amab	LapaMargNeraPertTrass	getuximab
F7H2	FGFR2/3	FIT3	IDH1		IDH2		KIT	KRAS G120		MET

EZH2	FGFR2/3 fusions	FLT3	IDH1	IDH2	КІТ	KRAS G12C	MET
• Tazemetostat	 Erdafitinib Infigratnib Pemigatinib	MidostaurinGilteritinib	• Ivosidenib	• Enasidenib	ImatinibRegorafenbiSunitinib	SotorasibAdagrasib	CabozantinibCapmatinibCrizotinibTepotinib

RET

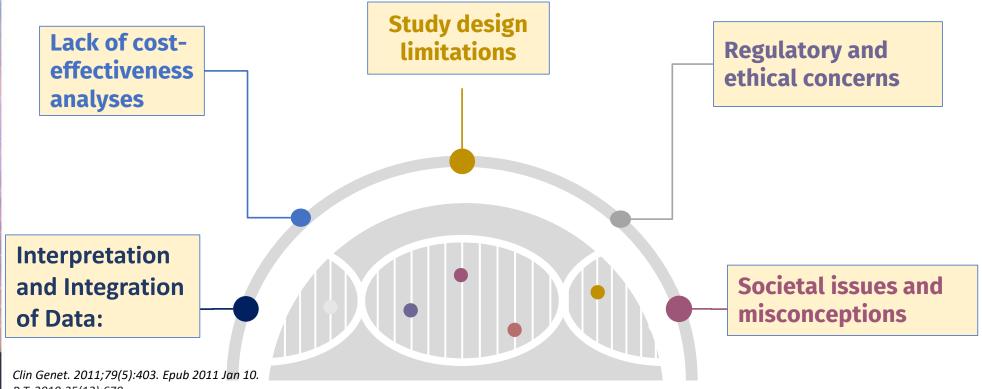
fusion/mutation

ROS1 fusion

SMARCB1

MSI-H/TMB-H/dMMR/PD-L1

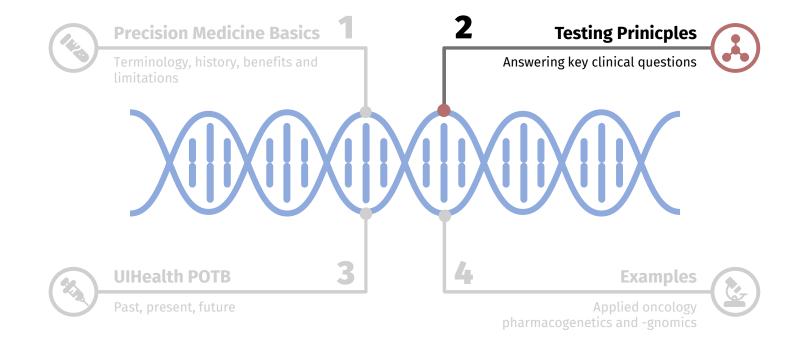
ICHP Spring Meeting	SelumetinibNTRK fusionEntrectinibLarotrectinib	AvapritinibImatinib	AlpelisibCapivasertib	PralsetinibSelpercatinib	 Crizotinib Entrectinib Repotrectinib	Tazemetostat	• Immune Checkpoint Inhibitor
Meeting							


PIK3CA

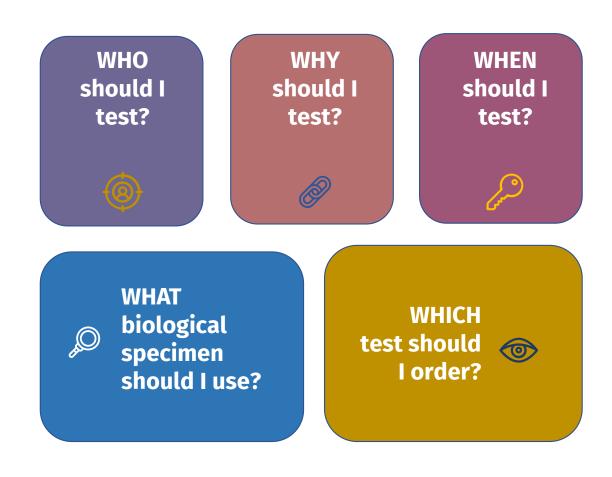
NF1

PDGFRA

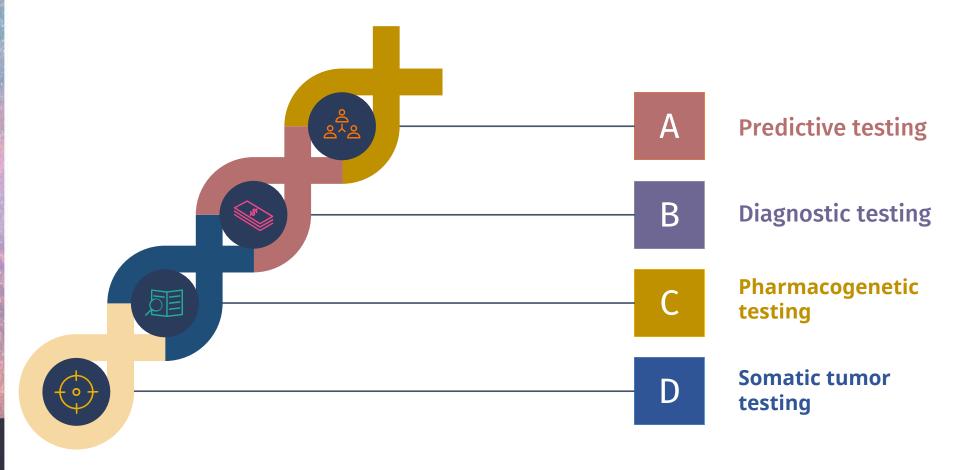
Current Limitations to Widespread Use



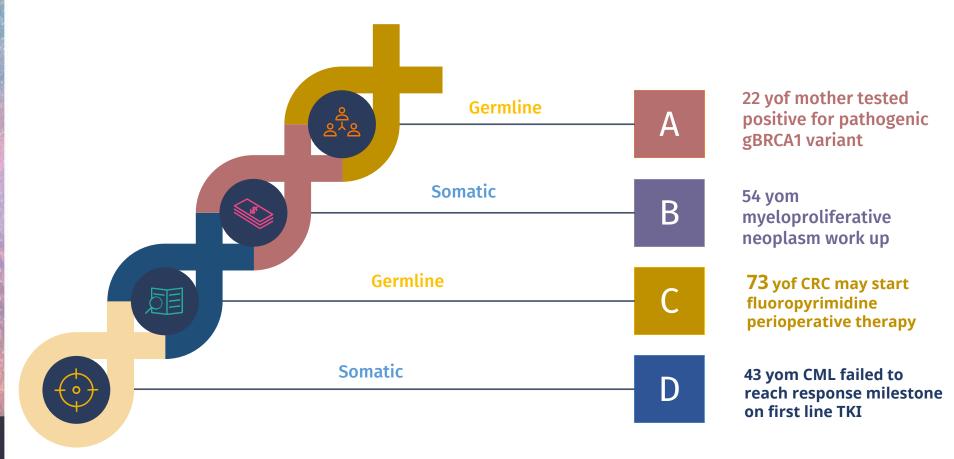
Clin Genet. 2011;79(5):403. Epub 2011 Jan 1 P T. 2010;35(12):670. Lancet. 2015 Apr;385(9978):1617. N Engl J Med 2016; 375:1289-1294


Genet Med. 2011;13(1):63. Lancet. 2010;375(9727):1749. Epub 2010 Apr 29.

Outline



Key Clinical Questions



Clinical Application – Why test?

Clinical Application – Who To Test?

Extent of Testing – Which test?

Selected variants

Single-nucleotide genotyping panels Genotype most common variants and hot spots first Less expensive and faster turnaround time

Entire gene(s)

Sequences all nucleotides across the gene to ID pathogenic variants

Single Gene Select Disease – Associated Set Comprehensive genome-wide

More expensive, longer turnaround time, complex interpretation and application

Copy number variation

Entire chromosome

Detection of deletions or duplications of exons or entire genes Can be assessed on entire gene panels, IHC, FISH, but not singlenucleotide panels

Assessment of segmental chromosomal gains or losses, translocations, or other structural rearrangements

Not assessed on single-nucleotide panels

Examples – Which test?

Selected variants

Somatic – uveal melanoma HLA-A*02:01 allele sequencing **Germline** – factor V Leiden PCR

Entire gene(s)

Somatic

- Single gene: TNBC/ovarian BRCA1/2 sequencing
- Select Set: NGS Solid Tumor Mutation Panel
- Comprehensive: NGS Tumor molecular profiling
 Germline
- Single gene: Hemophilia B sequencing
- Select Set: NGS Hereditary Cancer Syndrome Panels
- Comprehensive: Limited clinical use

Copy number variation

Entire chromosome

Somatic - HER2 + breast caner IHC→FISH Germline - Trisomy 21 MDS cytogenetics

Somatic – CML/ALL t(9;22) aka BRC-ABL cytogenetics **Germline –** Telomere flow cytometry-FISH

Nature. 1994 May 5;369(6475):64-7.

Testing Method – What test?

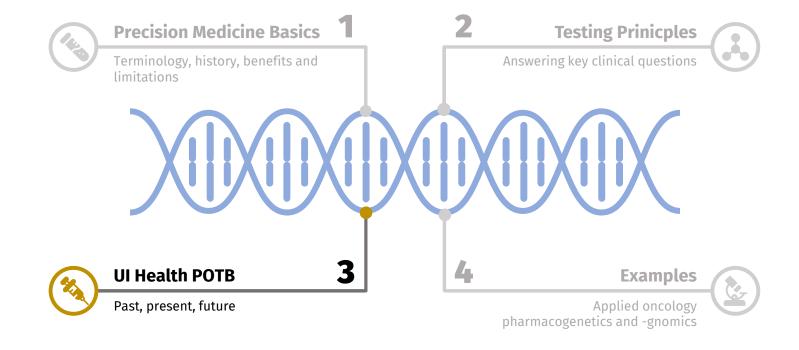
Microarrays

Cheaper than sequencing
Used in GWAS research,
genetic expression
profiling

Sequencing

Ex. Sanger sequencing, NGS
Queries a broad group of genes
simultaneously
VUS and secondary findings
Leveraged for genotyping panels

Provides ability to obtain a global view of chromosomal number and structure Specialized labor and expertise required to perform the analysis



What Specimen and when?

	Germline	Somatic
Rationale	 Disease predisposition for family members Drug selection (BRCA associated) 	1) Drug selection
Timing	Part of diagnostic work-up, but can be performed anytime	Recent biopsy is important
Tissue Source	Blood (WBCs) or buccal	Tissue (formalin fixed or fresh frozen) or liquid biopsy (blood for cf DNA)
Frequency	Once	Diagnosis, progression

Outline

UIC's Precision Oncology Tumor Board (POTB)

Why is there a need for POTB?

Cancer care can change in a weekend...

FDA ODAC Panel Votes Against Sotorasib Data in KRAS G12C+ Advanced NSCLC

October 7, 2023 Kristi Rosa

News

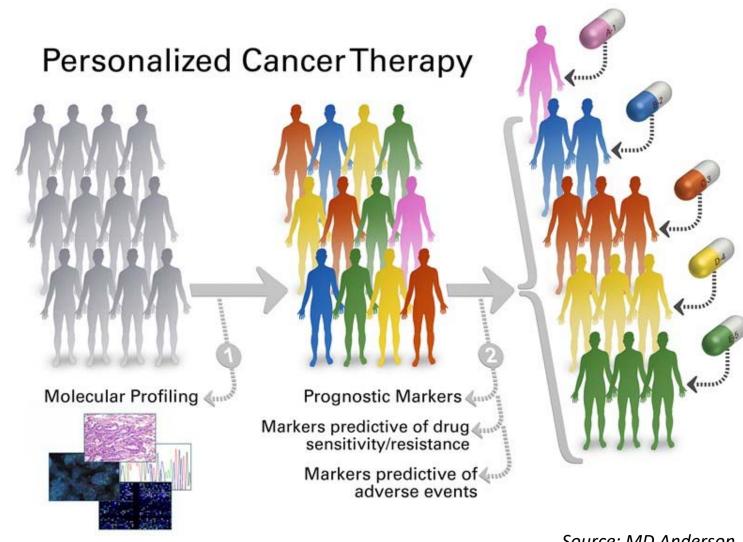
In May 2021, the FDA

mutated, locally advar

systemic therapy.3

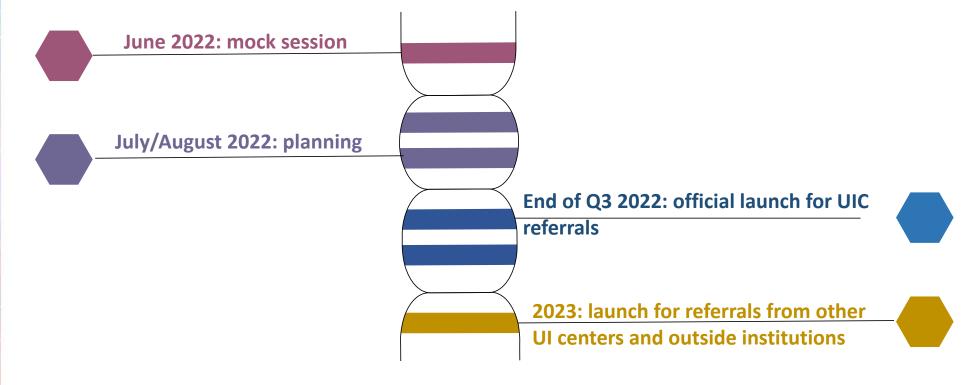
The FDA Oncologic Drugs Advisory Committee voted 10-to-2 that findings from the phase 3 CodeBreaK 200 trial cannot be reliably interpreted.

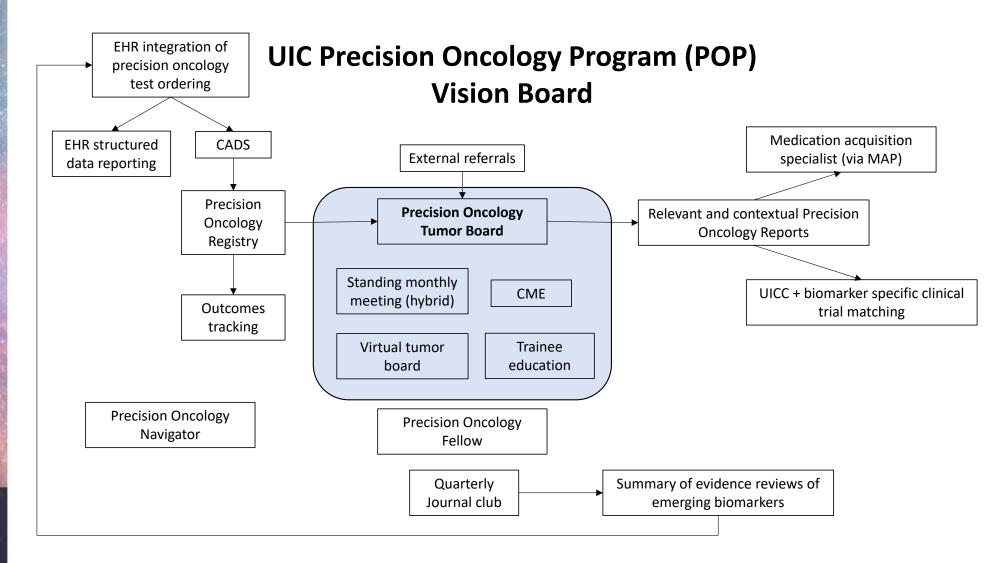
FDA ODAC Panel Votes Against Sotorasib Data in KRAS G12C+
Advanced NSCLC


According to the FDA's Oncologic Drugs Advisory Committee (ODAC), the progression-free survival (PFS) data from the phase 3 CodeBreaK 200 trial (NCT04303780) evaluating sotorasib (Lumakras) vs docetaxel for the treatment of patients with pretreated, locally advanced or metastatic *KRAS* G12C-mutated non-small cell lung cancer (NSCLC) cannot be reliably interpreted.

with KRAS G12C-

d at least 1 prior


The panel recently held a vote, in which participants voted 10-to-2 against the reliability of the results.



UIC POTB Launch Timeline

Tentative plan for monthly session

Tumor Board Discussion Summary

Precision Oncology Tumor Board

UIC Precision Oncology Tumor Board Discussion Summary

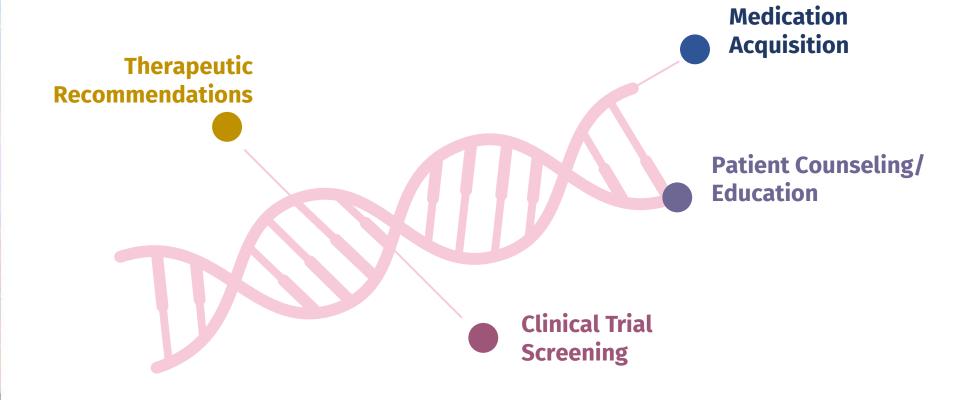
Re: PATIENT NAME, DOB ***, MRN ***

Dear Dr. NAME

Thank you for your referral to the UIC Precision Oncology Tumor Board (POTB). The case was discussed by the POTB specialists on DATE.

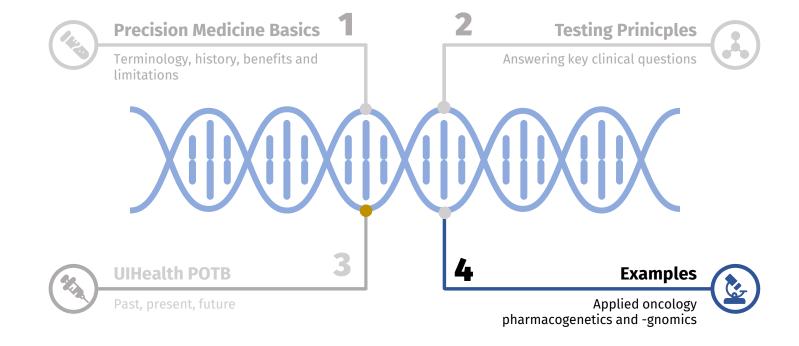
Your patient has the following type of actionable biomarkers:

FDA-recognized biomarker associated with sensitivity to an FDA-approved drug
Biomarker with compelling clinical evidence suggesting sensitivity to therapy (off-label use)
Biomarkers that match clinical trial enrollment criteria
Biomarker associated with off-target treatment implications
Biomarker with potential germline implications
Other
None


OncoKB Therapeutic Levels of Evidence

OncoKB Therapeutic Levels of Evidence

Standard Care FDA-recognized biomarker predictive of response to an FDA-approved drug in this indication Standard care biomarker recommended by the NCCN or other professional guidelines predictive of response to an FDA-approved drug in this indication **Compelling clinical evidence** supports the biomarker as Investigationa being predictive of response to a drug in this indication Standard care or investigational biomarker predictive 3B of response to an FDA-approved or investigational drug in another indication **Compelling biological evidence** supports the biomarker as being predictive of response to a drug Hypothetical **Standard care** biomarker predictive of **resistance** to an Standard Care R1 Resistance FDA-approved drug in this indication **Compelling clinical evidence** supports the biomarker as Investigational R2 Resistance being predictive of resistance to a drug



Pharmacist Integration

Outline

UIC POTB

- Three cases
 - Case presentation by referring oncologist (if available)
 - Molecular background
 - Therapeutic implications review by clinical pharmacist
 - Discussion
- Cases + discussion will be kept to ~10 minutes to allow for adequate time

Case 1: YL (Dr Feldman)

Diagnosis: NSCLC, lung adenocarcinoma

Clinical stage: Initial dx cT2a N0 (stage IB) → recurrence contralateral lung stage IVA

Clinical history:

-s/p lobectomy for original dx, lung adenoca w/ EGFR L858R

-recurrence ~1.5y later w/ 2 new lung nodules, enrolled in clinical trial and randomized to Osimertinib arm

-CT ~1.5y after w/increasing RLL lesions, bx proven lung adenoca → plan for RFA

Biomarker result of interest: EGFR L718V exon 18

Clinical question: role of EGFR L718V mutation in Osimertinib resistance?

Case 1: YL (Dr Feldman)

Tier I: EGFR p.L858R

Tier II: MSH2 p.E809K, MSH6 p.E1163V

Tier III: A p.H384fs, AR p.S176R, BRCA2 c.8954-delAACA, NOTCH3

p.R75Q, PMS2 p.H139D, PTCH1 p.T416S, PTEN p.V21F, RB1 p.F473fs, TP53

p.Y126*

GENOMIC VARIANTS

EGFR

Somatic - Potentially Actionable

p.L858R Missense variant (exon 21) - GOF

p.L718V Missense variant (exon 18) - GOF

Variant Allele Fraction

22.7% -

12.8% =--

Case 1: YL (Dr Feldman) Tempus xT

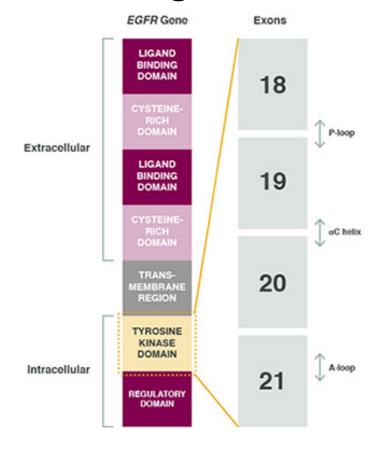
Sample:

RLL mass

Immunotherapy Biomarkers:

1. PDL1 TPS <1%, MMR normal, TMB 2.1m/MB

Tier I Variants:


- 1. EGFR L858R, exon 21
- 2. EGFR L718V, exon 18

Tier II Variants:	Tier III Variants:
1. n/a	1. n/a

Germline testing done or indicated?

Gene Background

Distribution of mutation types*

Mutation type	Frequency
Exon 18: G719X	~2%
Exon 19 deletions	45–46%
Exon 20: S768I	<1%
T790M	4%
Insertions	~1%
Exon 21: L858R	38-45%
L861Q	1%

Lung Cancer

Volume 118, April 2018, Pages 1-5

Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib

Yutao Liu a, 1, Yan Li b, 1, Qiuxiang Ou c, Xue Wu c, Xiaonan Wang d, Yang W. Shao c, e, Jianming Ying b

EGFR L718V (+)/T790M (–) as a Mechanism of Resistance in Patients with Metastatic Non–small-cell Lung Cancer with EGFR L858R Mutations

Published: April 08, 2021 • DOI: https://doi.org/10.1016/j.cllc.2021.03.018 •

Therapeutic Implications

FDA-Approved Therapies, Current Diagnosis				
Class	Drug	Mutation	Level of Evidence	
	Afatinib	Dacomitinib function	NCCN, Consensus, Non- Small Cell Lung Cancer MSK OncoKB, Level 1	
	Dacomitinib			
EGFR Inhibitor	Erlotinib			
	Gefitinib			
	Osimertinib			
Combination (EGFR Inhibitor + VEGFR2 Inhibitor)	Erlotinib + Ramucirumab			

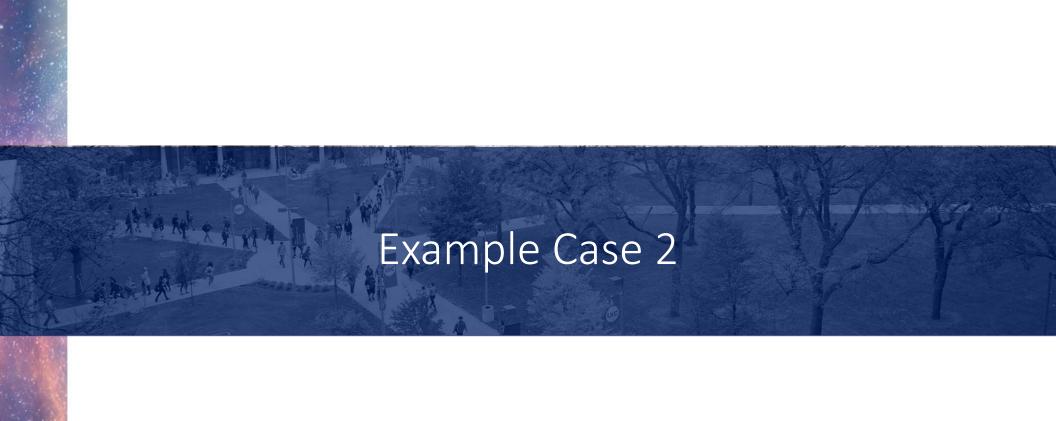
Therapeutic Implications:

Durable clinical benefit from afatinib in a lung adenocarcinoma patient with acquired *EGFR* L718V mutation-mediated resistance towards osimertinib: a case report and literature review

- 5 case reports in the literature:
 - Raez et al. demonstrated that 2 of 3 NSCLC patients with EGFR L718V respond to afatinib with disease stabilization
 - Fang et al. revealed that the use of afatinib in an EGFR-mutated LUAD patient with acquired L718V mutation yielded a PFS of at least 6 months
 - Song et al. showed durable response to afatinib with a PFS of 18 months and counting

Clinical Trial Implications

Trials For Tier I Variant				
Clinical Trial	Disease State	Pt Mutation	Phase	Study Contact
Phase 2 Platform Study in Patients With Advanced Non-Small Lung Cancer Who Progressed on First-Line Osimertinib Therapy (ORCHARD) (NCT03944772)	NSCLC	EGFR p.L858R mutation EGFR p.L718V mutation	Phase II	Contact: AstraZeneca Clinical Study Information Center 1-877-240-9479 information.center@astrazenec a.com Recruiting Research Site Chicago, Illinois, United States, 60612


POTB Clinical Question and Therapeutic Implications

- Clinical question: role of EGFR L718V mutation in Osimertinib resistance?

 Therapeutic Implications Summary:
 - Therapy after progression on osi stratified based on sx, CNS involvement, and extent of mets
 - NCCN recommend definitive local therapy and cont of osimertinib as an option
 - Acquired EGFR L718V mutation-mediated resistance towards osimertinib derived durable response to the 2nd gen EGFR-TKI afatinib in several case reports

Case 2: B.S. (Dr Weinberg) 73M w/ L neck LAD

Diagnosis: lung adenocarcinoma vs medullary thyroid carcinoma

Clinical stage: IVb (pT2N1b)

Clinical history:

-Presented to ENT w/ L neck lump, bx showed lung adenocarcinoma

-PET w/ L neck, SC, mediastinal LAD + LUL nodule

-s/p thyroidectomy

Biomarker result of interest: xT: RET C630R, xG+ MITF heterozygous

Clinical question: Consideration for TKI. Discussion about how initial diagnosis was NSCLC/poorly differentiated carcinoma and need to use clinical assessment and not always histologic diagnosis to guide work-up.

Case 2: B.S. (Dr Weinberg) 73M w/ L neck LAD

Pathology sample – Left Neck Lymph Node

A. Left Neck Lymph Node, Biopsy:

- Entire sample consists of metastatic poorly differentiated carcinoma consistent metastatic lung adenocarcinoma
 - O Tumor desmoplasia is identified
 - O Negative for residual lymphoid tissue

Molecular Findings Tempus xT

Sample:

L neck LN

Immunotherapy Biomarkers:

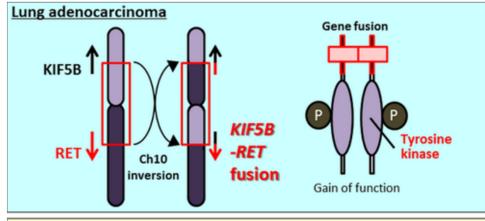
- 1. PDL1 < 1%
- 2. TMB 3.7 m/MB 48%
- 3. MSI Stable

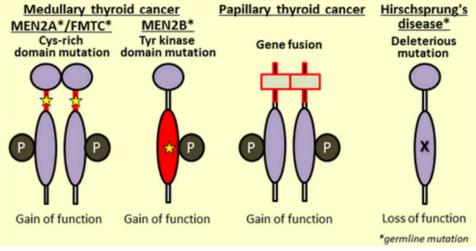
Tier I Variants:

1. RET p.C630R

Tier II Variants:	Tier III Variants:
1. N/A	1. N/A

Germline Findings Tempus xG


Gene	Variant	Zygosity	Classification
MITF	c.3 G>A p.M1?	Heterozygous	Likely Pathogenic Variant


Interpretation

This individual is heterozygous for a likely pathogenic variant in MITF. Although this gene is associated with multiple autosomal dominant phenotypes/disorders, the type of variant identified in this individual is predicted to be associated with loss-of-function (LOF) and Waardenburg spectrum disorder. While LOF variants in MITF have not been shown to be associated with autosomal dominant MITF-related cancer susceptibility, we cannot exclude the possibility that this variant might be associated with increased risk for MITF-related cancers.

RET Fusion vs Point Mutation

Case Report

Case Rep Oncol. 2018 May-Aug; 11(2): 399-403.

Published online 2018 Jun 22. doi: <u>10.1159/000490238</u>

PMCID: PMC6047557

PMID: 30022943

Genomic Profiling Reveals Medullary Thyroid Cancer Misdiagnosed as Lung Cancer

Eva J. Gordon, a,* David Parker, Melly Barth, Jennifer Pena, Julia A. Elvin, Thomas DeLeon, and Nina J. Karlin

▶ Author information ▶ Article notes ▶ Copyright and License information <u>Disclaimer</u>

- 70YM p/w L shoulder/neck pain --> CT w/many small lung nodules, mediastinal LAD, 3.3cm thyroid nodule
- Pathology (Thyroid, Lung) described as poorly differentiated adeno likely lung primary
- NGS --> RET point mutation C630R
- Treated as MTC w/vandetanib w/ 6-month response

Therapeutic Implications

FDA Approved Therapies, Current Indication			
RET Inhibitor	Pralsetinib	NCCN Consensus, Thyroid Medullary Cancer RET p.C630R Gain of function	
KET IIIIIIDILOI	Selpercatinib	NCCN Consensus, Thyroid Medullary Cancer RET p.C630R Gain of function	

Therapeutic Implications: ARROW

Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study

Table 11: Efficacy Results for RET-Mutant MTC Previously Treated with Cabozantinib or Vandetanib (ARROW)

Efficacy Parameters	GAVRETO (N=55)
Overall Response Rate (ORR)- (95% CI)	60 (46,73)
Complete Response, %	1.8
Partial Response, %	58
Duration of Response (DOR)	(N=33)
Median in months (95% CI)	NR (15.1, NE)
Patients with DOR ≥ 6 months [‡] , %	79

NR = Not Reached; NE = Not Estimable

- Confirmed overall response rate assessed by BICR
- † Based on observed duration of response

Table 12: Efficacy Results for Cabozantinib and Vandetanib-naïve RET-Mutant

MTC (ARROW)

	Efficacy Parameters	GAVRETO (N=29)
<	Overall Response Rate (ORR)- (95% CI)	66 (46, 82)
	Complete Response, %	10
	Partial Response, %	55
	Duration of Response (DOR)	(N=19)
	Median in months (95% CI)	NR (NE, NE)
	Patients with DOR ≥ 6 months [‡] , %	84

NR = Not Reached; NE = Not Estimable

- Confirmed overall response rate assessed by BICR
- † Based on observed duration of response

The lancet Diabetes & endocrinology 9.8 (2021): 491-501.

Therapeutic Implications: LIBRETTO 001 MTC

A Study of Selpercatinib (LOXO-292) in Participants With Advanced Solid Tumors, RET Fusion-Positive Solid Tumors, and Medullary Thyroid Cancer

Table 11: Efficacy Results in LIBRETTO-001 (RET-Mutant MTC Previously Treated with Cabozantinib or Vandetanib)

	RETEVMO (n = 55)		
Overall Response Rate ¹ (95% CI)	69% (55%, 81%)		
Complete response	9%		
Partial response	60%		
Duration of Response			
Median in months (95% CI)	NE (19.1, NE)		
% with ≥6 months²	76		

¹ Confirmed overall response rate assessed by BIRC.

NE = not estimable

Table 12: Efficacy Results in LIBRETTO-001 (Cabozantinib and Vandetanib-naïve RET-Mutant MTC)

_		
		RETEVMO (n = 88)
$\left\{ \right.$	Overall Response Rate ¹ (95% CI)	73% (62%, 82%)
	Complete response	11%
	Partial response	61%
	Duration of Response	
	Median in months (95% CI)	22.0 (NE, NE)
	% with ≥6 months ²	61

¹ Confirmed overall response rate assessed by BIRC.

NE = not estimable

N Engl J Med 2020; 383:825-835

² Based on observed duration of response.

² Based on observed duration of response.

LIBRETTO 001: Other Solid Tumor

Tumour-agnostic efficacy and safety of selpercatinib in patients with *RET* fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial

Table 14: Efficacy Results in LIBRETTO-001 (Other RET Fusion-Positive Solid Tumors)

	RETEVMO (n = 41)
Overall Response Rate ¹ (95% CI)	44% (28, 60)
Complete response	4.9%
Partial response	39%
Duration of Response	
Median in months (95% CI)	24.5 (9.2, NE)
% with ≥6 months ²	67%

¹ Confirmed overall response rate assessed by BIRC.

NE = not estimable

The Lancet Oncology, 23(10), 1261-1273.

Table 15: Efficacy Results by Tumor Type in LIBRETTO-001 (Other RET Fusion-Positive Solid Tumors)

Tumor Type	Patients (n = 41)	ORR ^{1,2}		DOR Range (months)
		n (%)	95% CI	
Pancreatic adenocarcinoma	11	6 (55%)	(23, 83)	2.5, 38.3+
Colorectal	10	2 (20%)	(2.5, 56)	5.6, 13.3
Salivary	4	2 (50%)	(7, 93)	5.7, 28.8+
Unknown primary	3	1 (33%)	(0.8, 91)	9.2
Breast	2	PR, CR	NA	2.3+, 17.3
Sarcoma (soft tissue)	2	PR, SD	NA	14.9+
Xanthogranuloma	2	NE, NE	NA	NA
Carcinoid (bronchial)	1	PR	NA	24.1+
Carcinoma of the skin	1	NE	NA	NA
Cholangiocarcinoma	1	PR	NA	5.6+
Ovarian	1	PR	NA	14.5+
Pulmonary carcinosarcoma	1	NE	NA	NA
Rectal neuroendocrine	1	NE	NA	NA
Small intestine	1	CR	NA	24.5

⁺ denotes ongoing response.

² Based on observed duration of response.

¹ Confirmed overall response rate assessed by BIRC.

² Best overall response for each patient is presented for tumor types with ≤2 patients.

Clinical Trial Implications

CLINICAL TRIALS

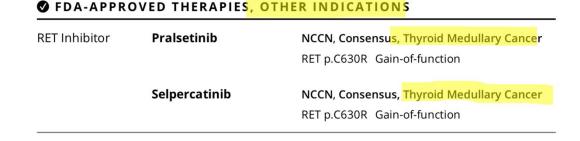
A Study of Selpercatinib (LOXO-292) in Participants With Advanced Solid Tumors, RET Fusion-Positive Solid Tumors, and Medullary Thyroid Cancer (LIBRETTO-001) (NCT03157128)

Phase I/II Chicago, IL - 7 mi ✓ RET mutation

Study of TPX-0046, A RET/SRC Inhibitor in Adult Subjects With Advanced Solid Tumors Harboring RET Fusions or Mutations (NCT04161391)

Phase I/II Chicago, IL - 7 mi ✓ RET mutation

TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer (NCT02693535)


Phase II
Chicago, IL - 40 mi
✓ RET mutation

POTB Clinical Question and Therapeutic Implications

- Clinical question: Consideration for TKI. Discussion about how initial diagnosis was NSCLC/poorly differentiated carcinoma and need to use clinical assessment and not always histologic diagnosis to guide work-up.
- Therapeutic implications summary:
- RET inhibitors are approved in the setting of
 - **RET fusion**: aNSCLC (1L), thyroid cancer (1L), advanced solid malignancy w/o other tx options
 - RET mutant: medullary thyroid
- Caution when interpreting NGS reports. Must look at the whole picture.

Resources and Future Directions

Germline Precision Medicine Resources

Somatic Oncology Precision Medicine Resources



Personalized Cancer Therapy

Other Precision Medicine Resources

Future Directions

- Enhanced Molecular Profiling
- Continued Development of New Targeted Therapies
- Expanded Clinical Trial Designs
- Refined Liquid Biopsy Techniques
- Integration of AI and Language Learning Models
- Enhanced Data Sharing
- Integration of Multi-Omic Data
- Focus on Value Based Medicine

Precision Oncology: Who, How, What, When, and When Not?. *Am Soc Clin Oncol Educ Book* **37**, 160-169(2017).

Questions?

nnaffa2@uic.edu

