Role of Live Biotherapeutic Products (LBPs) in the Treatment of *Clostridioides difficile*

Presented By:
Aaron Hunt, PharmD, BCPS
Infectious Diseases Fellow
UIC College of Pharmacy

Mentored By:
Larry Danziger, PharmD
Director, Section of Infectious
Diseases Pharmacotherapy
UIC College of Pharmacy

Disclosures

The presenter does not have any conflicts or financial disclosures in relation to the content of this presentation.

The faculty mentor is a current consultant to Ferring Pharmaceuticals. Any relevant conflicts have been resolved.

Objectives

- 1. Explain the mechanism of Live Biotherapeutic Products (LBPs) and their role in the management of *Clostridioides difficile* (C. diff.) infections
- 2. Review the safety and efficacy data of historical and present Fecal Microbiota Transplants (FMTs)
- 3. Describe the literature supporting new FDAapproved LBPs

Clostridioides difficile Infection (CDI) and the Role of Live Biotherapeutic Products

Epidemiology

- CDC Emerging Infections Program
 - Data from 10 counties
 - Population of 12.2 million people
 - ~12% recurrence rate
- CDC threat report (2017):
 - 223,900 hospitalized cases
 - 12,800 deaths

Current Management

Role of New Agents

Vancomycin Fidaxomicin

Recurrence

*FMT: Fecal Microbiome Transplantation

What are Live Biotherapeutic Products?

- Transfer of fecal material
 - Transplants he by mines to infer a patie
 - Clini
- LBP = FMT
- Earry III G
 - Ful Techanism under investigation
 - Ideal methods to be determined

Mechanisms of Fecal Microbiome TransplantationWhy it Works

- Successful restoration of microbiome
 - Recipient diversity index matching donors
 - Recipient species colonization matches donors

Microbiome regulates local growth factors

- Deconjugating 1º bile acids into 2º bile acids
- Bacteriotoxins with G+ activity

Microbiome regulates cytokine expression

- Responsible for local immune regulation
- Reduces proinflammatory cytokines

Safety and Efficacy Data of FMT Products

Fecal Microbiome Transplantation

Clinical Success

Primary Outcome: Cure Without Relapse at 10 weeks

2023 ICHP ANNUAL MEETING

VAN: Vancomycin 500 mg po QID x 4 days

BL: Bowel lavage

FMT: Fecal microbiome transplantation

FMT Modern Efficacy Systematic Review and Meta-analysis

Baunwall et al. 2020

- 45 studies: RCT and cohort
- 8w <u>cure</u>: 84% single dose (80-88%)
- 8w <u>cure</u>: 91% repeat dose (89-94%)

Pomares Bascuñana et al. 2021

- 15 studies: RCT, cohort, and cases within 5 years
- <u>Effectiveness:</u> 82% (75%-89%)

Safety DataReports from 50 Publications

Gastrointestinal

Abdominal pain, bloating, diarrhea, nausea, flatulence

Autoimmune

IBD disease flare, rheumatoid arthritis, peripheral neuropathy

Systemic

Fever

Infectious

Peritonitis, pneumonia, diverticulitis, appendicitis, bacteremia, UTI

Procedural

Nasal irritation, sore throat, bowel perforation, GI bleed, aspiration

Pathogen Transmission

Norovirus, Cytomegalovirus, multi-drug resistant organisms

Donor Screening

- Human immunodeficiency virus
- Hepatitis A
- Hepatitis B
- Hepatitis C
- Syphilis
- Norovirus
- Rotavirus
- Adenovirus
- Ova and parasites

- Clostridioides difficile
- Vancomycin-resistant enterococci
- Methicillin-resistant *Staphylococcus aureus*
- ESBL and CRE genes
- Shiga-toxin *E. coli*
- Vibrios
- Salmonella
- Listeria
- SARS-CoV-2 (after 12/01/2019)

ESBL = Extended-Spectrum Beta Lactamase Inhibitor
CRE = Carbapenem Resistant Enterobacterales
SARS-CoV-2 = Severe acute respiratory syndrome coronavirus 2

Newly Approved Therapy: RBX2660

Fecal microbiota, live-jslm

Rebyota™

Product Description – RBX2660

- 50g stool/150 mL PEG/NS enema
- $1x10^8 5x10^{10}$ CFU/mL mixed culture
 - 1x10⁵ Bacteroides CFU
- Standardized donors
- Frozen sample: stored from -60 °C to -90 °C
- Administer within 72 hours of last antibiotic dose

ANNUAL MEETING

Clinical Trials - Overview

Excluded

- Immunocompromised, gastrointestinal comorbidity, alternative pathogen or diagnosis
- Not applicable to PUNCH CD3 OLS

Demographics

- ~65 years old
- ~2/3 female
- >90% white
- ~90% vancomycin lead-in

Adverse Events

- 69.7% RBX2660 vs 60.2% placebo
- None life-threatening
- No pathogen-traced infections
- Study discontinuation <1%

Aggregate Clinical Trial Data

Participants (%) N=620	Doses of RBX2660
324 (52.3%)	1
270 (43.5%)	2
14 (2.3%)	3
12 (1.9%)	4

Clinical Trials – PUNCH CD2 Efficacy of RBX2660 vs Placebo

Key Takeaways

Not All Patients Need 2 Enemas Long Term Safety Data

Dubberke ER, et al. *Infect Dis Ther.* 2023;12(2):703-709.

Clinical Trials - PUNCH Open Label

RBX2660 vs Historical Control

Key Takeaways

Long Term Sustained Response Long Term Safety Data High Efficacy vs. Antibiotics

Orenstein R, et al. BMC Infect Dis. 2022;22(1):245.

Clinical Trials – PUNCH Open Label Similarity of Stool Cultures

Clinical Trials – PUNCH CD3 Efficacy of RBX2660 vs Placebo

Treatment Failure

• ≥18 years old
• Relapse after ≥1 treatments
• C. difficile (+)
• Antibiotic treatment course

Randomization Double-blinded

<u>1° Outcome</u>: Posterior probability of success

Bayesian modeling including PUNCH CD-2

Cutoff per FDA requirement 0.97503 ($\alpha = 0.025$)

<u>2° Outcomes</u>	
Overall RBX2660 response	83.6%
Placebo arm response	62.5%

Sustained response in both arms

90%

Clinical Trials – PUNCH CD3 Primary Outcome

Posterior Distribution of Success Rate for mITT

Difference in Rate of Treatment Success

Difference in Rate of Treatment Success, $P_{T,1}$ - $P_{C,1}$

Key Takeaways

Efficacy Significantly Better Than Placebo Resulted in Drug Approval

Khanna S, et al. *Drugs*. 2022;82(15):1527-1538.

Interim Results – PUNCH CD3 OLS Single Dose in Previously Excluded Comorbidities

Key Takeaways

Expected Safety in GI Comorbidities Expected Efficacy in GI Comorbidities

Newly Approved Therapy: SER109

Fecal microbiota spores, live-brpk

VowstTM

Product Description – SER109

- 4 oral capsules daily x 3 days
- $1x10^6 3x10^7$ spore CFU / capsule
 - Phyla Firmicutes Spores
 - Non-spore removal: ethanol and filtration
- Shelf life: 36 months at 2-25°C
- Administration
 - 10 oz Magnesium citrate night before
 - 2-4 days after last antibiotic dose

Clinical Trials - Overview

Excluded

- Immunocompromised, gastrointestinal comorbidity, alternative pathogen or diagnosis
- Concomitant loperamide, cholestyramine, diphenoxylate/atropine

Demographics

- ~65 years old
- ~2/3 female
- >90% white
- ~80% vancomycin lead-in

Adverse Events

- One hypersensitivity reaction
- No serious adverse events drug-related
- No pathogen-traced infections

Trial Name and Population	Treatment Related Adverse Event Rate
Khanna et al (N = 30)	50%
ECOSPOR (n = 59)	55%
ECOSPOR III (n = 89)	51%
ECOSPOR IV (N = 263)	53.6%

Clinical Trials - ECOSPOR SER109 vs Placebo

- ≥18 years old
- Relapse after ≥1 treatment
- C. difficile (+)
- Antibiotic treatment course
- 10 oz Magnesium citrate bowel prep

4 capsules SER109

Placebo

Randomization Double-blinded

Key Takeaways

Dose-Response Relationship Long Term Safety Data

Outcome	Risk Ratio
1 dose SER109 vs Placebo	1.2
	(0.8-1.9)

McGovern BH, et al. Clinical Infectious Diseases. 2021;72(12):2132-2140.

Clinical Trials - ECOSPOR Dose vs Engraftment Post-hoc

2023 ICHP ANNUAL MEETING

Clinical Trials - ECOSPOR Engraftment vs Recurrence

Clinical Trials – ECOSPOR III SER109 vs Placebo

Placebo

Randomization
Double-blinded

Key Takeaways

High-Dose Efficacy Superior to Placebo High Sustained Clinical Response

Outcome	Risk Ratio
8-week Recurrence Risk SER109 vs Placebo	0.32 (0.18-0.58)
Sustained Clinical Response SER109	88%

MAL

Feuerstadt P, et al. *N Engl J Med*. 2022;386(3):220-229

• 10 oz Magnesium citrate bowel prep

Clinical Trials – ECOSPOR IV

Single arm

- Relapse after ≥1 treatment
- C. difficile (+)
- 10-42d antibiotic treatment
- ECOSPOR III recurrence
- C. difficile EIA (+)

10oz MgCt bowel prep

4 capsules daily x3 days

1° Outcome: Adverse Events up to 24 weeks

- Overall 53.6% (141/263)
- 1 hypersensitivity reaction

Key Takeaways

Short Term Safety of High Dose Sustained Clinical Response

Summary: C. difficile and LBPs

What We Do Know

- Successful LBP engraftment resembles donor microflora and alters local colonic environment
 - Clinical success is correlated with engraftment and has 90% sustained response
- LBPs remain consistently more effective than antibiotic monotherapy for the treatment of CDI
 - LBPs remain consistently safe both short-term and long-term

What We Don't Know

- The full relationship between colonic microbiota, the adaptive immune response, and *C. difficile* infection
 - Desirable product contents and formulation
- Why some patients are unresponsive to LBPs
 - The safety of LBPs in specialty populations

Supplemental Resources

Mechanistic Review:

Littmann, E.R., Lee, JJ., Denny, J.E. et al. Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun 12, 755 (2021).

Product Review:

Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: Review and update. *Journal of the Formosan Medical Association*. 2019;118:S23-S31

Citations

- 1. CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019
- 2. CDC. *Clostridioides difficile* Infection (CDI) Tracking. Atlanta, GA: U.S. Department of Health and Human Services, CDC. Last updated February 24, 2022.
- 3. Tennant M. Fecal Microbiota Transplantation: The Future of Feces. *The Yale Global Health Review.* December 1, 2016. Accessed online March 8th, 2023. https://yaleglobalhealthreview.com/2016/12/01/fecal-microbiota-transplantation-the-future-of-feces/
- 4. Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to *Clostridioides difficile*: A tricky balance between immunoprotection and immunopathogenesis. *Journal of Leukocyte Biology*. 2021;109(1):195-210.
- 5. Leffler DA, Lamont JT. clostridium difficile infection. Longo DL, ed. N Engl J Med. 2015;372(16):1539-1548.
- 6. Littmann, E.R., Lee, JJ., Denny, J.E. *et al.* Host immunity modulates the efficacy of microbiota transplantation for treatment of *Clostridioides difficile* infection. *Nat Commun* **12**, 755 (2021). https://doi.org/10.1038/s41467-020-20793-x
- 7. Lozupone, C., Lladser, M., Knights, D. *et al.* UniFrac: an effective distance metric for microbial community comparison. *ISME J* **5**, 169–172 (2011). https://doi.org/10.1038/ismej.2010.133
- 8. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent *clostridium difficile*. *N Engl J Med*. 2013;368(5):407-415.
- 9. Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. *Surgery*. 1958;44(5):854-859.
- 10. Pomares Bascuñana RÁ, Veses V, Sheth CC. Effectiveness of fecal microbiota transplant for the treatment of *Clostridioides difficile* diarrhea: a systematic review and meta-analysis. *Lett Appl Microbiol*. 2021;73(2):149-158.

ANNUAL MEETING

Citations

- 11. Baunwall SMD, Lee MM, Eriksen MK, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. *EClinicalMedicine*. 2020;29-30:100642
- 12. Wang S, Xu M, Wang W, et al. Systematic review: adverse events of fecal microbiota transplantation. Grivennikov S, ed. *PLoS ONE*. 2016;11(8):e0161174.
- 13. DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant *e. Coli* bacteremia transmitted by fecal microbiota transplant. *N Engl J Med*. 2019;381(21):2043-2050
- 14. Yang L, Li W, Zhang X, et al. The evaluation of different types fecal bacteria products for the treatment of recurrent Clostridium difficile associated diarrhea: A systematic review and network meta-analysis. *Front Surg.* 2022;9:927970.
- 15. Carlson PE. Regulatory considerations for fecal microbiota transplantation products. Cell Host & Microbe. 2020;27(2):173-175
- 16. Drugs.com. *Rebyota 150 mL single dose Images.* Updated February 12, 2023. Accessed online March 4th, 2023. https://www.drugs.com/imprints/medicine-34078.html
- 17. Rebyota. Package insert. Ferring Pharmaceuticals, Inc. 2022
- 18. Braun T, Guthmueller B, Harvey AJ. 1042. Safety of investigational microbiota-based live biotherapeutic rbx2660 in individuals with recurrent clostridioides difficile infection: data from five prospective clinical studies. *Open Forum Infect Dis.* 2021;8(Suppl 1):S611.
- 19. Dubberke ER, Orenstein R, Khanna S, Guthmueller B, Lee C. Final results from a phase 2b randomized, placebo-controlled clinical trial of rbx2660: a microbiota-based drug for the prevention of recurrent clostridioides difficile infection. *Infect Dis Ther*. 2023;12(2):703-709.
- 20. Orenstein R, Dubberke ER, Khanna S, et al. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: results from an open-label phase 2 clinical trial. *BMC Infect Dis*. 2022;22(1):245.

Citations

- 21. Khanna S, Assi M, Lee C, et al. Efficacy and safety of rbx2660 in punch cd3, a phase iii, randomized, double-blind, placebo-controlled trial with a bayesian primary analysis for the prevention of recurrent clostridioides difficile infection. *Drugs*. 2022;82(15):1527-1538.
- 22. Khanna S, Dubberke ER, Knapple WL, et al. S132 an interim analysis of a phase 3, open-label study indicates efficacy and safety of rbx2660 in patients with recurrent clostridioides difficile infection. *Am J Gastroenterol*. 2022;117(10S):e96-e96.
- 23. Drugs.com. *SER109 Pill white capsule-shape*. Updated May 3, 2023. Accessed online August 2, 2023. https://www.drugs.com/imprints/ser109-34446.html
- 24. U.S. Food & Drug Administration. Summary Basis for Regulatory Approval. Published April 26, 2023. Accessed online August 2023. Available at: https://www.fda.gov/vaccines-blood-biologics/vowst.
- 25. Vowst. Package insert. Seres Therapeutics, Inc. 2023.
- 26. Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent *clostridium difficile* infection. *J Infect Dis*. 2016;214(2):173-181.
- 27. McGovern BH, Ford CB, Henn MR, et al. Ser-109, an investigational microbiome drug to reduce recurrence after *clostridioides difficile* infection: lessons learned from a phase 2 trial. *Clinical Infectious Diseases*. 2021;72(12):2132-2140.
- 28. Feuerstadt P, Louie TJ, Lashner B, et al. Ser-109, an oral microbiome therapy for recurrent *clostridioides difficile* infection. *N Engl J Med*. 2022;386(3):220-229.
- 29. Sims MD, Khanna S, Feuerstadt P, et al. Safety and Tolerability of SER-109 as an Investigational Microbiome Therapeutic in Adults With Recurrent Clostridioides difficile Infection: A Phase 3, Open-Label, Single-Arm Trial. JAMA Netw Open. 2023;6(2):e2255758. doi:10.1001/jamanetworkopen.2022.55758

