A Practice Change is Coming: review of the 2019 Global Initiative for Asthma report

Lisa Lubsch, PharmD, BCPPS, AE-C, FPPAG
Clinical Professor / Pediatric Pulmonary Pharmacist
SIUe School of Pharmacy / Cardinal Glennon
Children's Hospital

Disclosures

- · I have nothing to disclose
- I will be discussing off-labeled use of medication (EVERYDAY)

Objectives

- Discuss the preferred controller therapies for asthma treatment
- Compare low-dose inhaled corticosteroid / formoterol to short-acting beta2-agonist reliever therapy for acute asthma

Asthma Guides

US Department of Health and Human Services. Publication No. 07–4051; 2007, www.ginasthma.org, www.nhlbi.nih.gov/about/advisoryand-peer-review-committees/national-asthma-education-and-prevention-program-coordinating/EPR4-working-group

Assess, Adjust, Review response Symptom. Exercision Side-effects Lung function Patient satisfaction Patient spalls Treatment of modifiable risk factors and combridities Education and skulls training Asthma medication options Asthma medication options Asthma medication Asthma medication Step 3 Treatment of modifiable risk factors and combridities Step 3 Lou-dose LSULBA Asthma medication Step 3 Lou-dose LSULBA Asthma medications Step 3 Lou-dose LSULBA Asthma medications Step 3 Lou-dose LSULBA Asthma medications Step 3 LSULBA Asthma medications Step 4 LSULBA Asthma medications Step 3 LSULBA Asthma medications Step 4 LSULBA Asthma medications Step 3 LSULBA Asthma medications Step 4 LSULBA LSULBA LSULBA Asthma medications Step 4 LSULBA LSULBA Asthma medications Step 4 LSULBA LSULBA LSULBA Asthma medications Step 4 LSULBA LSULBA LSULBA Asthma medications Step 3 LSULBA

Pharmacologic Therapy

- · Long term control
 - Anti-inflammatory
 - Inhaled corticosteroids (ICS)
 - Mast cell stabilizers
 - · Leukotriene modifiers
 - Biologics
 - Bronchodilators
 - Long-acting β2-agonists (LABA)
 - Long-acting muscarinic antagonists (LAMA)
 - Theophylline

- · Quick relief
 - Short-acting β 2-agonists (SABA)
 - Systemic corticosteroids
 - Short-acting anticholinergic agents

Long-acting β_2 -agonists

WARNING Long-acting beta2-adrenergic agopists, such as salmeterol one of the active ingredients in ADVAIR DISKUS, may increase of asthma-rel th. Therefore, when treating patients with asthma, physicians DISKUS for patients not adequately controlled on other asthm (e.g., low- to medium-dose inhaled corticosteroids) or whose disease severit initiation of treatment with 2 maintenance therapies. Data from a S study that compared the safety d to usual asthma therapy of salmeterol (SEREVENT® Inha ol) or showed an increase in asthma-relate ths in patients i ng salmeterol (13 deaths out of 13,176 patients treated for 28 weeks on salmeterol versus 3 deaths out of 13,179 patients on placebo) (see WARNINGS).

 FDA removed box warning in late 2017 after several safety trials found no significant increase in serious asthma outcomes

Step-Up in Asthma Therapy

Long-acting Muscarinic Antagonist Meta-analysis

Asthma Phenotypes

Available Biologics

Drug	Target	Age	Route	Indication	Adverse Effects
Omalizumab (Xolair)	IgE	6	SQ	-Sensitization on skin prick testing or specific IgE, increase total serum IgE -Idiopathic urticaria	headache, eosinophilia/vasculitis, arthralgia, malignancy
Mepolizumab (Nucala)	IL-5	6	SQ*	-Blood eosinophils ≥300/μl -Nasal polyps	herpes zoster infection
Benralizumab (Fasenra)		12	SQ*		
Reslizumab (Cinqair)		18	IV		malignancy
Dupilumab (Dupixent)	IL-4 (and IL-13)	12	SQ*	-Blood eosinophils ≥150/μl or FeNO ≥25ppb -Nasal polyps -Atopic dermatitis	eosinophilia/vasculitis, ocular effects

*Available in prefilled syringe for possible home use

Steroids in Eosinophil Negative Asthma (SIENA) Trial

Patient Case 1

- TG is an 12-year-old on Step 3 therapy with fluticasone/salmeterol HFA 45/21 mcg 2 puffs BID and poorly controlled symptoms and frequent exacerbations. She also has allergic rhinitis, food allergies, and eczema.
- What is the most appropriate step-up therapy for TG's asthma?
 - a. Increase fluticasone/salmeterol 115/21 mcg, 2 puffs BID
 - b. Add tiotropium Respimat 1.25 mcg, 2 puffs daily
 - c. Add montelukast 5mg PO HS
 - d. Refer for possible biologic therapy

Pharmacologic Therapy

- · Long term control
 - Anti-inflammatory
 - Inhaled corticosteroids (ICS)
 - Mast cell stabilizers
 - Leukotriene modifiers
 - Biologics
 - Bronchodilators
 - Long-acting β 2-agonists (LABA)
 - Long-acting muscarinic antagonists (LAMA)
 - Theophylline

· Quick relief

- Short-acting β 2-agonists (SABA)
- Systemic corticosteroids
- Short-acting anticholinergic agents

Pharmacologic Therapy

- · Long term control
 - Anti-inflammatory
 - Inhaled corticosteroids (ICS)
 - Mast cell stabilizers
 - Leukotriene modifiers
 - Biologics
 - Bronchodilators
 - Long-acting β2-agonsts (LABA)
 - Long-acting muscarinic antagonists (LAMA)
 - Theophylline

- · Quick relief
 - Inhaled corticosteroids (ICS) + formoterol
 - Short-acting β 2-agonists (SABA)
 - Systemic corticosteroids
 - Short-acting anticholinergic agents

Single Inhaler Therapy (SIT) or Single Maintenance and Reliever Therapy (SMART)

Formoterol

Mechanism	selective β ₂ -agonist		
Pharmaco- kinetics	Onset 5-15 minDuration 12 hours		
Reliver Dose	Budesonide 80 or 160 mcg / formoterol 4.5 mcg: 1 puff as needed Seek medical attention if using > 12 puffs/day Mometasone / formoterol: unknown		
Clinical Pearls	Avoid using other LABA for reliever		

ICS / Formoterol Evidence

Study	Design	Sample	Intervention	Outcomes
SYGMA-1	RDBPC, 52 weeks	n=3849, ≥12 years, mild asthma	Budesonide/ formoterol Turbuhaler 200/6 mcg prn vs terbutaline prn or vs budesonide 200 mcg BID + terbutaline prn	-Asthma control: OR 1.14, 95%CI 1.00-1.30 and 0.64, 95%CI 0.57-0.73 -Severe exacerbation: RR 0.36, 95%CI 0.27-0.49 and 0.83, 95%CI 0.59-1.16 -More AE with terbutaline
SYGMA-2	RDBPC, 52 weeks	n=4215, ≥12 years, mild asthma	Budesonide/ formoterol Turbuhaler 200/6 mcg prn vs budesonide 200 mcg BID + terbutaline prn	-Annualized rate of severe asthma exacerbations: 0.11, 95%CI 0.01-0.13 vs 0.12, 95%CI 0.10-0.14 -Improved symptom control with maintenance

N Engl J Med 2018;378:1865-76, N Engl J Med 2018;378:1877-87

ICS / Formoterol Evidence

Study	Design	Sample	Intervention	Outcomes
Novel START	Open- label RCT, 52 weeks	n=668, ≥18 years, mild asthma	Budesonide/ formoterol Turbuhaler 200/6 mcg prn vs albuterol prn or vs budesonide 200 mcg BID + albuterol prn	Annualized rate of severe asthma exacerbations: 0.195 vs 0.4 and 0.195 vs 0.175
PRACTICAL	Open- label RCT, 52 weeks	n=890, ≥18 years, mild- moderate asthma	Budesonide/ formoterol Turbuhaler 200/6 mcg prn vs budesonide 200 mcg BID + terbutaline prn	Annualized rate of severe asthma exacerbations: 0.119 vs 0.172

N Engl J Med 2019;380:2020-30, Lancet 2019;394:919-28

Single Maintenance and Reliver Therapy Meta-analysis

ICS / Formoterol Discussion

Pros

- Overcome misconception regarding disease and SABA
- Improve adherence ICS
- Less ICS exposure

Cons

- Formulation studied unavailable in US
- · Not approved in US
- Payor may measure nonadherence
- History of frequent exacerbation still require action plan with SABA

Patient Case 2

- TJ is a 15-year-old female who has been coughing a few times per month. She was using an albuterol inhaler that she received for a respiratory infection last winter, but recently ran out of the medication. Her sleep and activities are not limited by her symptoms. Her FEV1 is 82% predicted.
- Which regimen is best for managing TJ's asthma?
 - a. Continue albuterol per action plan
 - b. Initiate budesonide/formoterol 80/4.5 mcg, 1 puff as needed
 - Initiate budesonise/formoterol 80/4.5 mcg, 2 puffs BID and 1 puff as needed
 - Initiate fluticasone 44 mcg, 2 puffs BID and albuterol per action plan

Summary

- LABAs are preferred in combination with ICS for asthma control
- Tiotropium and asthma biologics are additional controller options
- Practical considerations need to be addressed as reliever therapy shifts to ICS / Formoterol as needed

A Practice Change is Coming: review of the 2019 Global Initiative for Asthma report

Lisa Lubsch, PharmD, BCPPS, AE-C, FPPAG Clinical Professor / Pediatric Pulmonary Pharmacist SIUe School of Pharmacy / Cardinal Glennon Children's Hospital